Tuesday, November 24, 2009
Hukum-hukum dasar kimia dan perhitungan kimia (stoikiometri)
Istilah stoikiometri berasal dari bahasa Yunani yaitu stoicheon yang berarti unsur dan metron yang berarti pengukuran. Jadi, stoikiometri adalah ilmu yang mempelajari hubungan kuantitatif antara pereaksi dan produk dalam reaksi. Stoikiometri dapat dikatakan pula sebagai hitungan kimia.
Pernahkah kamu perhatikan bagaimana reaksi kimia berlangsung? Pada saat kamu mengadakan kegiatan praktikum di laboratorium(laboratorium Analitik, Anorganik dan Fisik FMIPA UnMul. lho kok bawa-bawa nama Lab itu sih... hehe ?), dalam wujud apa bahan-bahan kimia tersebut direaksikan? Pada umumnya reaksi kimia berlangsung dalam bentuk larutan. Sebelum kamu mereaksikan larutan tersebut, tentunya kamu akan menghitung terlebih dahulu berapa jumlah zat yang akan direaksikan dan berapa jumlah zat yang akan dihasilkan. Dalam ilmu kimia hal tersebut dipelajari dalam stoikiometri larutan.
Untuk dapat memahami konsep stoikiometri larutan, maka harus memahami terlebih dahulu jenis-jenis reaksi dalam larutan elektrolit, pengertian konsentrasi, konsep mol, dan persamaan reaksi.
A. Reaksi dalam Larutan Elektrolit
Apakah kamu masih ingat tentang larutan yang dapat menghantarkan arus listrik? Disebut larutan apakah larutan tersebut? Reaksi yang berlangsung dalam larutan tersebut adalah reaksi ionisasi. Larutan tersebut adalah larutan elektrolit. Larutan elektrolit digolongkan menjadi dua macam yaitu larutan elektrolit lemah dan larutan elektrolit kuat.
Reaksi antara ion-ion dalam larutan elektrolit dapat menghasilkan senyawa kovalen, endapan, gas, atau perubahan warna larutan.
1. Reaksi Penetralan Asam Basa
Reaksi antara senyawa asam dan basa dapat menghasilkan garam mineral dan air
Asam + basa ↔ garam + H2O
Contoh:
KOH(aq) + HCl(aq) KCl(aq) + H2O(1)
Mg(OH)2(aq) + H2SO4(aq) MgSO4 + 2 H2O(1)
Reaksi antara asam dan basa umumnya disebut dengan reaksi penetralan. Akan tetapi, tidak semua garam yang dihasilkan dari reaksi ini bersifat netral. Ada garam-garam yang mempunyai sifat asam atau basa. Hal ini tergantung dari kuat atau lemahnya asam dan basa yang bereaksi membentuknya.
asam kuat + basa → kuat garam netral
asam kuat + basa → lemah garam bersifat asam
asam lemah + basa kuat → garam bersifat basa
Konsentrasi larutan asam atau basa dapat ditentukan berdasarkan reaksi yang terjadi dalam larutan tersebut. Cara ini dikenal sebagai titrasi asam basa. Eksperimen titrasi dilakukan dengan menambahkan larutan asam atau basa yang diketahui konsentrasinya (larutan standar) ke dalam larutan asam atau basa yang ingin diketahui konsentrasinya. Penambahan terus dilakukan sampai tercapai titik ekuivalen, yaitu titik saat asam dan basa tepat habis bereaksi. Jika volume larutan standar dan larutan sampel diketahui, maka konsentrasi larutan sampel dapat ditentukan.
2. Reaksi Oksida Basa dengan Asam
Oksida basa beraksi dengan asam membentuk garam dan air
Oksida basa + asam → garam + H2O
Contoh:
K2O(s) + H2SO4(aq) → K2SO4(aq) + H2O(1)
3. Reaksi Oksida Asam dengan Basa
Reaksi antara oksida asama dengan basa dapat membentuk garam dan air
Oksida asam + basa → garam + H2O
Contoh
4. Reaksi Pengendapan
Beberapa kation dan anion dalam larutan elektrolit dapat membentuk larutan yang sukar larut dalam air
Contoh:
5. Reaksi yang Menghasilkan Gas
Reaksi larutan asam dengan abebrapa logam menghasilkan gas hidrogen.
Oksida asam + logam → garam + H2
Contoh:
Logam yang dapat bereaksi dengan asam adalah logam yang terletak di sebelah kiri atom hidrogen pada deret volta berikut:
B. Stokiometri Larutan
Sebagian besar reaksi kimia dapat berlangsung lebih cepat apabila pereaksi dalam bentuk larutan. Mengapa demikian? Apa yang membedakan reaksi kimia dalam larutan (campuran homogen) dengan campuran heterogen? Sebelum pembahasan tentang stoikiometri larutan maka kita akan bahas terlebih dahulu tentang konsentrasi larutan.
1. Konsentrasi Larutan
a. Pengertian Konsentrasi Larutan
Konsentrasi adalah istilah umum untuk menyatakan banyaknya bagian zat terlarut dan pelarut yang terdapat dalam larutan. Konsentrasi dapat dinyatakan secara kuantitatif maupun secara kualitatif. Untuk ukuran secara kualitatif, konsentrasi larutan dinyatakan dengan istilah larutan pekat (concentrated) dan encer (dilute). Kedua isitilah ini menyatakan bagian relatif zat terlarut dan pelarut dalam larutan. Larutan pekat berarti jumlah zat terlarut relatif besar, sedangkan larutan encer berarti jumlah zat terlarut relatif lebih sedikit. Biasanya, istilah pekat dan encer digunakan untuk membandingkan konsentrasi dua atau lebih larutan.
Dalam ukuran kuantitatif, konsentrasi larutan dinyatakan dalam g/mL (sama seperti satuan untuk densitas). Namun, dalam perhitungan stoikiometri satuan gram diganti dengan satuan mol sehingga diperoleh satuan mol/L. Konsentrasi dalam mol/L atau mmol/mL dikenal dengan istilah molaritas atau konsentrasi molar.
b. Molaritas
Molaritas atau kernolaran menyatakan jumlah mol zat terlarut (n) dalam satu liter larutan (L) atau milimol zat terlarut (n) dalam setiap satu mililiter larutan (mL).
Keterangan: W = berat zat (gram)
Mr = masa molekul relative zat
V = volume larutan (mL)
Suatu larutan dapat dibuat dengan cara melarutkan zat terlarut murniatau mengencerkan dari larutan pekatnya: Agar lebih jelas, perhatikanlah contoh berikut:
1) Penentuan Molaritas dengan Cara Pelarutan
Jika kita ingin membuat 250 mL larutan K2CrO4 0,25 M dari bentuk kristal, caranya adalah dengan menghitung massa zat yang akan dilarutkan.
mol K2CrO4 = 250 mL x 0,25 M
= 0,0625 mol
g K2CrO4 = 0,0625 mol x 194 g / mol
= 12,125 g
Jadi, yang harus dilakukan adalah melarutkan 12,125 g kristal K2CrO4 ke dalam 250 mL air
2) Penentuan Molaritas dengan Cara Pengenceran
Jika larutan di atas akan diubah konsentrasinya menjadi 0,01 M K2CrO4, caranya adalah dengan cara pengenceran. Dalam pengenceran kita akan mengubah volume dan kemolaran larutan, namun tidak mengubah jumlah mol zat terlarut.
nl =n2 → n = MV
↓
M1 V1 =M2V2
Keterangan:
M1 = konsentrasi sebelum pengenceran
V1 = volume sebelum pengenceran
M2 = konsentrasi setelah pengenceran
V2 = volume setelah pengenceran
Untuk contoh di atas, kita dapat mengambil 10 mL larutan K2CrO4 0,25M. Setelah itu, dilakukan pengenceran dengan perhitungan:
M1V1 = M2V2
0,25M x 10mL = 0,01MxV2
= 250 mL
Jadi, yang harus dilakukan adalah mengencerkan 10 mL K2CrO4 0,25 M sampai volumenya menjadi 250 mL.
Jika dua jenis larutan dicampurkan dan jumlah mol zat terlarut mengalami perubahan (n1 tidak sama dengan n2), maka mol zat setelah dicampurkan tergantung kepada jumlah
nl dan n2 sedangkan volume larutannya menjadi V1 + V2.
Di laboratorium, larutan-larutan pekat tidak diketahui molaritasnya, tetapi yang diketahui (dapat dibaca pada etiket botol) adalah kadar (dalam satuan persen berat) dan densitas (g / mL). Bagaimanakah membuat larutan dengan molaritas tertentu dari larutan pekat? Prinsipnya sama dengan cara pengenceran. Sebagai contoh, pembuatan 100 mL larutan asam perklorat 0,1 M dari asam perklorat dengan etiket: kadar 70% dan densitas 1,664 g/mL. Caranya adalah dengan mencari molaritas larutan pekat terlebih dahulu. Untuk memperoleh nilai M, maka kita harus mengubah kadar (%) menjadi mol dan mengkonversi massa (gram) menjadi volume (mL).
= 11,59 M HClO4
Dari contoh di atas dapat diturunkan rumus:
Molaritas (M) = Persen berat x Densitas x 10 / Mr
Setelah molaritas diketahui, kemudian yang harus diambil (V1). Dalam hal ini, volume HC1O4 yang akan diambil adalah
V1 M1 = V2 M2
V1 x 11,59 M = 100 mL x 0,1
M V1 = 0,863 mL
Sebanyak 0,863 mL HC1O4 11,59 M dimasukkan ke labu takar berukuran 100 mL, kemudian ditambahkan akuades sampai tanda batas 100 mL dan digojog sampai homogen. Sekarang diperoleh larutan HC1O4 0,1 M sebanyak 100 mL
2. Perhitungan Kimia
a. Mol dan Persamaan Reaksi
Di kelas X kamu telah mempelajari tentang konsep mol. Pada pokok bahasan ini, kamu akan mempelajari konsep mol dan persamaan reaksi secara terpadu. Kita telah memahami bahwa satu mol suatu senyawa mengandung 6,02 x 1023 partikel senyawa tersebut. Jika diterapkan untuk atom atau molekul, maka:
1 mol = 6,02 x 1023 atom / molekul
Untuk mengingatkan hubungan antara konsep mol dengan jumlah partikel, massa atom/ molekul, volume standar, dan molaritas, perhatikan diagram “Jembatan Mol” berikut!
Bagan di atas memperlihatkan bahwa mol dapat men¬jembatani berbagai parameter sehingga memudahkan kita untuk memahami sebuah reaksi kimia.
Pada bagan tersebut, ditunjukkan bahwa semua jalur yang menuju ke mol menggunakan tanda “ pembagian “, sedangkan jalur yang keluar dari mol menggunakan tanda “perkalian”, kecuali untuk molaritas (M).
Sebagai contoh, perhatikan reaksi berikut!
H2(g) + O2(g) — H2O(g)
Reaksi di atas memperlihatkan bahwa jumlah atom oksigen pada reaktan ada dua buah, sedangkan jumlah oksigen di produk ada satu buah. Hal ini berbeda dengan atom H yang sudah sama. Oleh karena itu, reaksi harus disetarakan.
Penyetaraan reaksi dapat dilakukan dengan membuat koefisien O2 = ½ sehingga persamaan reaksinya menjadi sebagai berikut.
H2(g) + ½ O2(g) — H2O(g)
Pada reaksi di atas jumlah atom O dengan H pada reaktan sudah setara dengan jumlah atom O dan H pada produk. Angka pecahan dalam persamaan dapat dihilangkan dengan mengalikan dua terhadap semua koefisien reaksi.
2H2(g) + O2(g) 2H2O(g)
Persamaan reaksi di atas menunjukkan bahwa koefisien reaksi masing-masing untuk H2, 02, dan H2O adalah 2, 1, dan 2. Dalam perhitungan kimia, koefisien reaksi melambangkan perbandingan mol zat reaktan dan produk dalam suatu reaksi. Artinya, perbandingan mol dalam reaksi di atas, yaitu antara H2, 02, dan H2O adalah 2 : 1 : 2.
Perhatikanlah ilustrasi di bawah ini!
2H2(g) + O2(g) ---------------- 2H2O(g)
Perbandingan mol 2 : 1 : 2
Contoh lain adalah pembakaran gas metana di udara.
metana + oksigen ------------------------ karbondioksida + air
CH4 + 202 ----------------------- CO2 + 2H20
Persamaan reaksi menunjukkan bahwa 1 mol CH4 bereaksi dengan 2 mol O2 menghasilkan 1 mol CO2 dan 2 mol H2O.
Dari persamaan reaksi dapat kita katakan bahwa:
Jumlah mol H2O yang dihasilkan = 2
Jumlah mol CH4 yang beraksi 1
Perbandingan ini dapat digunakan untuk menghitung massa air yang dihasilkan ketika sejumlah tertentu gas metana terbakar di udara.
b. Perhitungan Massa Zat Reaksi
Jika kamu ingin mengerjakan suatu reaksi di laboratorium, kamu pasti akan mengukur bahan pereaksi dalam satuan gram atau liter sebelum rnereaksikannya. Oleh karena itu, pekerjaan di laboratorium akan selalu berkaitan dengan perhitungan massa.
Penentuan jumlah produk dan reaktan yang terlibat dalam reaksi harus diperhitungkan dalam satuan mol. Artinya, satuan-¬satuan yang diketahui harus diubah ke dalam bentuk mol. Metode yang sering dipergunakan dalam perhitungan kimia ini disebut metoda pendekatan mol.
Langkah-langkah metode pendekatan mol dapat dilihat pada langkah-langkah berikut.
1. Tuliskan persamaan reaksi dari soal yang ditanyakan, lalu disetarakan.
2. Ubahlah semua satuan yang diketahui dari tiap-tiap zat ke dalam mol
3. Gunakanlah koefisien reaksi untuk menyeimbangkan banyaknya mol zat reaktan dan produk.
4. Ubahlah satuan mol dari zat yang ditanyakan ke dalam satuan yang ditanyakan.
C. Reaksi Netralisasi
1. Proses Titrasi
Salah satu aplikasi stoikiometri larutan adalah perhitungan mencari molaritas atau kadar suatu zat dalam larutan sampel melalui suatu proses yang disebut analisis volumetri. Analisis volumetri adalah analisis kimia kuantitatif yang dilakukan dengan jalan mengukur volume suatu larutan standar yang tepat bereaksi (bereaksi sempurna) dengan larutan yang dianalisis. Misalnya akan dicari molaritas larutan Z, maka ke dalam larutan Z ditambahkan larutan standar sehingga terjadi reaksi sempurna antara larutan Z dengan larutan standar.Larutan standar adalah larutan yang konsentrasi atau molaritasnya telah diketahui secara pasti.Larutan standar ada 2 macam, yaitu larutan standar primer dan larutan standar sekunder. Larutan standar primer adalah larutan standar yang setelah dibuat, dapat langsung dipakai untuk ditambahkan ke dalam larutan yang akan dicari konsentrasinya. Larutan standar sekunder adalah larutan standar yang setelah dibuat tidak dapat langsung digunakan, tetapi harus dicek lagi konsentrasinya atau molaritasnya dengan menambahkan larutan standar primer. Proses pengecekan larutan standar sekunder dengan larutan standar primer disebut dengan standarisasi.
Proses penambahan larutan standar ke dalam larutan Z (yang akan ditentukan konsentrasinya) disebut dengan titrasi. Proses penambahan ini dilakukan sedikit demi sedikit (tetes demi tetes) memakai suatu alat yang disebut buret. Setiap satu tetes larutan standar yang keluar dari buret volumenya ± 20 mL. Zat yang akan dititrasi ditempatkan dalam erlenmeyer.
Saat terjadinya reaksi sempurna antara larutan standar dengan larutan yang dianalisis disebut titik akhir titrasi. Pada saat titik ini dicapai, titrasi dihentikan.
Dalam analisis volumetri, reaksi yang terjadi antara larutan standar dengan larutan yang dianalisis harus memenuhi beberapa syarat, antara lain:
1. Reaksi kimia yang terjadi harus sederhana dan persamaan reaksinya mudah ditulis.
2. Reaksi harus dapat berjalan cepat. Tetesan terakhir dari larutan standar harus sudah dapat menunjukkan reaksi sempurna. Jika tidak, maka akan terjadi kesalahan titrasi.
3. Pada saat reaksi sempurna (titik akhir titrasi) tercapai, harus ada pembahan fisik atau sifat kimia yang dapat diamati atau indikasi perubahan dapat diketahui dengan menambahkan larutan indikator ke dalam larutan yang akan dititrasi atau dapat pula disebabkan oleh warna larutan standarnya sendiri.
Sebagai contoh, reaksi penetralan larutan NaOH dengan larutan HC1. Baik larutan NaOH maupun larutan HC1 adalah berwarna bening. Hasil reaksinya(NaCI dan H20), juga berwarna bening, sehingga titik akhir titrasi tidak dapat diamati. Untuk itu, ke dalam larutan yang dititrasi (larutan NaOH), ditambahkan larutan indikator, misalnya indikator fenolftalein, disingkat (pp) yaitu suatu indikator yang dalam larutan basa memberikan warna merah dan dalam larutan yang bersifat asam tidak berwarna. Penambahan indikator ini menggunakan pipet tetes. Banyaknya larutan indikator yang ditambahkan cukup satu atau 2 tetes. Titrasi larutan NaOH dengan HC1 memakai indikator pp, dan titik akhir titrasi tercapai pada saat tetesan terakhir penambahan larutan HCl memberikan perubahan warna.
2. Titrasi Asam Basa
Salah satu penerapan konsep reaksi netralisasi adalah dalam titrasi asam basa. Dalam titrasi asam basa, nilai tetapan kesetimbangan ionisasi digunakan sebagai tolok ukur untuk penentuan pH larutan saat tercapainya titik ekuivalen. Titik ekuivalen atau titik akhir teoritis adalah saat banyaknya asam atau basa yang ditambahkan tepat setara secara stokiometri dengan banyaknya basa atau asam yang terdapat dalam •larutan yang dianalisis.
Rumus yang dapat digunakan untuk menentukan konsentrasi larutan sampel adalah sebagai berikut:
Mol sampel = mol standar
Msampel Vsampel = Mstandar Vstandar
Faktor-faktor Yang Mempengaruhi Laju Reaksi
Konsentrasi
Telah diuraikan dalam teori tumbukan, perubahan jumlah molekul pereaksi dapat berpengaruh pada laju suatu reaksi. Kita telah tahu bahwa jumlah mol spesi zat terlarut dalam 1 liter larutan dinamakan konsentrasi molar. Bila konsentrasi pereaksi diperbesar dalam suatu reaksi, berarti kerapatannya bertambah dan akan memperbanyak kemungkinan tabrakan sehingga akan mempercepat laju reaksi.
Bila partikel makin banyak, akibatnya lebih banyak kemungkinan partikel saling bertumbukan yang terjadi dalam suatu larutan, sehingga reaksi bertambah cepat.
coba pikirkan, apa yang terjadi bila dalam suatu kolam makin banyak perahu yang berjalan? Pasti akan terjadi banyak kemungkinan saling bertabrakan. Dan apa yang akan terjadi jika dalam suatu arus lalu lintas terdapat makin banyak kendaraan ? pasti tingkat kemungkinan terjadinya tarakan makin besar pula bukan ? (stop.. cukup sampai disitu aja bayanginnya, jangan diterusin.. kapan2 aja lagi.. hehe)
Luas Permukaan Sentuhan
Suatu reaksi mungkin banyak melibatkan pereaksi dalam bentuk padatan. Coba pikirkan keterangan ini(sambil dibayangkan atau dicoret-coret di buku juga boleh, kalau memang dapat membuat saudara2 lebih mengerti lagi.. hehe,, up to you lah,, ): bila kita mempunyai kubus dengan ukuran panjang, lebar dan tinggi masing-masing 1cm. Luas permukaan kubus bagian depan 1 cm x 1 cm = 1 cm2. Luas permukaan bagian belakang, kiri, kanan, atas dan bawah, masing-masing juga 1cm2 . Jadi luas permukaan seluruhnya 6 cm2.
Kemudian kubus tersebut kita pecah jadi dua, maka luas permukaan salah satu kubus hasil pecahan tadi adalah 2(1 cm x 1 cm) + 4 (0,5 cm x 1 cm) = 4 cm2. Berarti luas dua kubus hasil pecahan adalah 8 cm2. Apa yang dapat Anda simpulkan mengenai hal ini? Jadi makin kecil pecahan tersebut, luas permukaannya makin besar.
Bila kubus 1 cm3 dipecah menjadi dua, maka luas permukaan sentuh meningkat dua kalinya, dan permukaan sentuh tadi bereaksi dengan cairan atau gas. Hal ini merupakan contoh bagaimana penurunan ukuran partikel dapat memperluas permukaan sentuh zat.
Bagaimana pengaruh ukuran kepingan zat padat terhadap laju reaksi? Misalkan, kita mengamati reaksi antara batu gamping dengan larutan asam klorida (HCl). Percobaan dilakukan sebanyak dua kali, masing-masing dengan ukuran keping batu gamping yang berbeda, sedangkan faktor-faktor lainnya seperti massa batu gamping, volume larutan HCl, konsentrasi larutan HCl dan suhu dibuat sama. Dengan demikian, perubahan laju reaksi semata-mata sebagai akibat perbedaan ukuran kepingan batu gamping (kepingan halus dan kepingan kasar). Dalam hal ini, ukuran keping batu gamping kita sebut variabel manipulasi, perubahan laju reaksi (waktu reaksi) disebut variable respon, dan semua faktor lain yang dibuat tetap (sama) disebut variable kontrol.
Mengapa kepingan yang lebih halus bereaksi lebih cepat? Pada campuran pereaksi yang heterogen, reaksi hanya terjadi pada bidang batas campuran yang selanjutnya kita sebut bidang sentuh. Oleh karena itu, makin luas bidang sentuh makin cepat bereaksi. Jadi makin halus ukuran kepingan zat padat makin luas permukaannya.
Pengaruh luas permukaan banyak diterapkan dalam industri, yaitu dengan menghaluskan terlebih dahulu bahan yang berupa padatan sebelum direaksikan. Ketika kita makan, sangat dianjurkan untuk mengunyah makanan hingga lembut, agar proses reaksi di dalam lambung berlangsung lebih cepat dan penyerapan sari makanan lebih sempurna.
Apa hubungannya dengan tumbukan? Makin luas permukaan gamping, makin luas bidang sentuh dengan asam klorida makin besar, sehingga jumlah tumbukannya juga makin besar. Artinya makin kecil ukuran, makin luas permukaannya, makin banyak tumbukan, makin cepat terjadinya reaksi
Suhu
Umumnya kenaikan suhu mempercepat reaksi, dan sebaliknya penurunan suhu memperlambat reaksi. Bila kita memasak nasi dengan api besar akan lebih cepat dibandingkan api kecil. Bila kita ingin mengawetkan makanan (misalnya ikan) pasti kita pilih lemari es, mengapa? Karena penurunan suhu memperlambat proses pembusukan.
Laju reaksi kimia bertambah dengan naiknya suhu. Bagaimana hal ini dapat terjadi? Ingat, laju reaksi ditentukan oleh jumlah tumbukan. Jika suhu dinaikkan, maka kalor yang diberikan akan menambah energi kinetik partikel pereaksi. Sehingga pergerakan partikel-partikel pereaksi makin cepat, makin cepat pergerakan partikel akan menyebabkan terjadinya tumbukan antar zat pereaksi makin banyak, sehingga reaksi makin cepat.
Umumnya kenaikan suhu sebesar 100C menyebabkan kenaikan laju reaksi sebesar dua sampai tiga kali. Kenaikan laju reaksi ini dapat dijelaskan dari gerak molekulnya. Molekul-molekul dalam suatu zat kimia selalu bergerak-gerak. Oleh karena itu, kemungkinan terjadi tabrakan antar molekul yang ada. Tetapi tabrakan itu belum berdampak apa-apa bila energi yang dimiliki oleh molekul-molekul itu tidak cukup untuk menghasilkan tabrakan yang efektif. Kita telah tahu bahwa, energi yang diperlukan untuk menghasilkan tabrakan yang efektif atau untuk menghasilkan suatu reaksi disebut energi pengaktifan.
Energi kinetik molekul-molekul tidak sama. Ada yang besar dan ada yang kecil. Oleh karena itu, pada suhu tertentu ada molekul-molekul yang bertabrakan secara efektif dan ada yang bertabrakan secara tidak efektif. Dengan perkataan lain, ada tabrakan yang menghasilkan reaksi kimia ada yang tidak menghasilkan reaksi kimia. Meningkatkan suhu reaksi berarti menambahkan energi. Energi diserap oleh molekul-molekul sehingga energi kinetik molekul menjadi lebih besar. Akibatnya, molekul-molekul bergerak lebih cepat dan tabrakan dengan dampak benturan yang lebih besar makin sering terjadi. Dengan demikian, benturan antar
molekul yang mempunyai energi kinetik yang cukup tinggi itu menyebabkan reaksi kimia juga makin banyak terjadi. Hal ini berarti bahwa laju reaksi makin tinggi.
Katalis
Salah satu cara lain untuk mempercepat laju reaksi adalah dengan jalan menurunkan energi pengaktifan suatu reaksi. Hal ini dapat dilakukan dengan menggunakan katalis. Katalis adalah zat yang dapat meningkatkan laju reaksi tanpa dirinya mengalami perubahan kimia secara permanen. Katalis dapat bekerja dengan membentuk senyawa antara atau mengabsorpsi zat yang direaksikan.
Suatu reaksi yang menggunakan katalis disebut reaksi katalis dan prosesnya disebut katalisme. Katalis suatu reaksi biasanya dituliskan di atas tanda panah, misalnya
Katalis menyebabkan energi pengaktifan reaksi lebih rendah
Ada dua macam katalis, yaitu katalis positif (katalisator) yang berfungsi mempercepat reaksi, dan katalis negatif (inhibitor) yang berfungsi memperlambat laju reaksi. Katalis positif berperan menurunkan energi pengaktifan, dan membuat orientasi molekul sesuai untuk terjadinya tumbukan.
Sedangkan katalisator dibedakan atas katalisator homogen dan katalisator heterogen.
Katalisator homogen
Katalisator homogen adalah katalisator yang mempunyai fasa sama dengan zat yang dikatalisis. Contohnya adalah besi (III) klorida pada reaksi penguraian hidrogen peroksida menjadi air dan gas oksigen menurut persamaan :
Katalisator heterogen
Katalisator heterogen adalah katalisator yang mempunyai fasa tidak sama dengan zat yang dikatalisis. Umumnya katalisator heterogen berupa zat padat. Banyak proses industri yang menggunakan katalisator heterogen, sehingga proses dapat berlangsung lebih cepat dan biaya produksi dapat dikurangi.
Banyak logam yang dapat mengikat cukup banyak molekul-molekul gas pada permukannya, misalnya Ni, Pt, Pd dan V. Gaya tarik menarik antara atom logam dengan molekul gas dapat memperlemah ikatan kovalen pada molekul gas, dan bahkan dapat memutuskan ikatan itu. Akibatnya molekul gas yang teradborpsi pada permukaan logam ini menjadi lebih reaktif daripada molekul gas yang tidak terabsorbsi. Prinsip ini adalah kerja dari katalis heterogen, yang banyak dimanfaatkan untuk mengkatalisis reaksi-reaksi gas.
Di beberapa negara maju, kendaraan bermotor telah dilengkapi dengan katalis dari oksida logam atau paduan logam pada knalpotnya sehingga dapat mempercepat reaksi antara gas CO dengan udara. Dalam industri banyak dipergunakan nikel atau platina sebagai katalis pada reaksi hidrogenasi terhadap asam lemak tak jenuh.
Katalis platina, digunakan pada proses Oswald dalam industri asam nitrat, pengubah katalitik pada knalpot kendaraan bermotor
Katalisator enzim
Katalis sangat diperlukan dalam reaksi zat organik, termasuk dalam organisme. Reaksi-reaksi metabolisme dapat berlangsung pada suhu tubuh yang realtif rendah berkat adanya suatu biokatalis yang disebut enzim. Enzim dapat meningkatkan laju reaksi dengan faktor 106 hingga 1018, namun hanya untuk reaksi yang spesifik.
Dalam tubuh kita terdapat ribuan jenis enzim karena setiap enzim hanya dapat mengkatalisis satu reaksi spesifik dalam molekul (substrat) tertentu, Dalam proses katalisis enzim yang digunakan harus sesuai dengan substratnya
Salah satu contoh adalah enzim protease yang dapat digunakan sebagai katalis dalam proses penguraian protein, namun tidak dapat mengkatalisis penguraian skharosa.
Mekanisme Reaksi
Beberapa reaksi berlangsung melalui pembetukan zat antara, sebelum diperoleh produk akhir. Reaksi yang demikian berlangsung tahap demi tahap. Mekanisme reaksi ialah serangkaian reaksi tahap demi tahap yang terjadi berturut-turut selama proses perubahan reaktan menjadi produk.
Setiap tahap mekanisme reaksi diatas, mempunyai laju tertentu. Tahap yang paling lambat (tahap 2) disebut tahap penentu laju reaksi, karen tahap ini merupakan penghalang untuk laju reaksi secara keseluruhan.
Gelatin dibuat dari buah nanas. Buah Nanas mengandung enzim aktif protease yang dapat menguraikan molekul protein dalam gelatin Artinya, tidak ada pengaruh kenaikan laju tahap 1, 3, dan 4 terhadap reaksi total.
mungkin cukup sampai disini aja tulisan mengenai laju reaksi pada halaman blog ini. sebenarnya tulisan ini saya tampilkan dengan alasan pada kebanyakan keterangan-keterangan yang saya cari juga di situs-situs lain hanya menyebutkan point-pointnya saja dan hal-hal terdekat yang berhubungan dengan faktor-faktor tersebut. nah jadi disini saya mencoba untuk memberikan keterangan lebih yang mudah-mudahan dapat memberikan kejelasan yang lebih pula... tapi tak ada gading yang tak retak, masih banyak kekurangan pula pada tulisan ini, jadi mohon dimaklumi apa adanya...
hehe.. ^_^"
Airtanah? Apa dan Bagaimana Mencarinya?
Pertanyaan diatas seringkali muncul ketika sumber air yang kita gunakan selama ini seperti air sungai, danau atau air hujan tidak bisa kita dapatkan. Satu hal yang pasti ini adalah salahsatu jenis air jugasekedar intro di awal halaman ini(intro ? apaan tu intro ? hehe )awalnya sih nggk niat masukin tulisan ini ke halaman blog q, tapi sekedar iseng-iseng aja, siapa tau bermanfaat bagi yang membacanya, jadi aku masukin aja tulisan ini, walaupun cuma sedikit isinya. hehe, begitu ceritanya..tulisan ini aku baca dari sebuah situs juga yang kebetulan saat itu aku dan teman2 1 klompok lagi nyari bahan buat presentasi kuliah analisis air,,, hehe. selamat membaca..
kembali lagi ke kalimat awal, Pertanyaan diatas seringkali muncul ketika sumber air yang kita gunakan selama ini seperti air sungai, danau atau air hujan tidak bisa kita dapatkan. Satu hal yang pasti ini adalah salahsatu jenis air juga.Hanya dikarenakan jenis air ini tidak terlihat secara langsung, banyak kesalahfahaman dalam masalah ini. Banyak orang secara umum menganggap airtanah itu sebagai suatu danau atau sungai yang mengalir di bawah tanah. Padahal, hanya dalam kasus dimana suatu daerah yang memiliki gua dibawah tanahlah kondisi ini adalah benar. Secara umum airtanah akan mengalir sangat perlahan melalui suatu celah yang sangat kecil dan atau melalui butiran antar batuan.
(Model aliran airtanah melewati rekahan dan butir batuan)
Batuan yang mampu menyimpan dan mengalirkan airtanah ini kita sebut dengan akifer. Bagaimana interaksi kita dalam penggunaan airtanah? Yang alami adalah dengan mengambil airtanah yang muncul di permukaan sebagai mataair atau secara buatan. Untuk pengambilan airtanah secara buatan, mungkin analogi yang baik adalah apabila kita memegang suatu gelas yang berisi air dan es. Apabila kita masukkan sedotan, maka akan terlihat bahwa air yang berada di dalam sedotan akan sama dengan tinggi air di gelas. Ketika kita menghisap air dalam gelas tersebut terus menerus pada akhirnya kita akan menghisap udara, apabila kita masih ingin menghisap air yang tersimpan diantara es maka kita harus menghisapnya lebih keras atau mengubah posisi sedotan. Nah konsep ini hampirlah sama dengan teknis pengambilan airtanah dalam lapisan akifer (dalam hal ini diwakili oleh es batu) dengan menggunakan pompa (diwakili oleh sedotan)
Hal yang menarik, jika kita tutup permukaan sedotan maka akan terlihat bahwa muka air di dalam sedotan akan berbeda dengan muka air didalam gelas. Perbedaan ini akan mengakibatkan pergerakan air. Sama dengan analog ini, airtanahpun akan bergerak dari tekanan tinggi menuju ke tekanan rendah. Perbedaan tekanan ini secara umum diakibatkan oleh gaya gravitasi (perbedaan ketinggian antara daerah pegunungan dengan permukaan laut), adanya lapisan penutup yang impermeabel diatas lapisan akifer, gaya lainnya yang diakibatkan oleh pola struktur batuan atau fenomena lainnya yang ada di bawah permukaan tanah. Pergerakan ini secara umum disebut gradien aliran airtanah (potentiometrik). Secara alamiah pola gradien ini dapat ditentukan dengan menarik kesamaan muka airtanah yang berada dalam satu sistem aliran airtanah yang sama.
Mengapa pergerakan atau aliran airtanah ini menjadi penting? Karena disinilah kunci dari penentuan suatu daerah kaya dengan airtanah atau tidak. Perlu dicatat : tidak seluruh daerah memiliki potensi airtanah alami yang baik.
Model aliran airtanah itu sendiri akan dimulai pada daerah resapan airtanah atau sering juga disebut sebagai daerah imbuhan airtanah (recharge zone). Daerah ini adalah wilayah dimana air yang berada di permukaan tanah baik air hujan ataupun air permukaan mengalami proses penyusupan (infiltrasi) secara gravitasi melalui lubang pori tanah/batuan atau celah/rekahan pada tanah/batuan.
(Model siklus hidrologi, dimodifikasi dari konsep Gunung Merapi-GunungKidul)
Proses penyusupan ini akan berakumulasi pada satu titik dimana air tersebut menemui suatu lapisan atau struktur batuan yang bersifat kedap air (impermeabel). Titik akumulasi ini akan membentuk suatu zona jenuh air (saturated zone) yang seringkali disebut sebagai daerah luahan airtanah (discharge zone). Perbedaan kondisi fisik secara alami akan mengakibatkan air dalam zonasi ini akan bergerak/mengalir baik secara gravitasi, perbedaan tekanan, kontrol struktur batuan dan parameter lainnya. Kondisi inilah yang disebut sebagai aliran airtanah. Daerah aliran airtanah ini selanjutnya disebut sebagai daerah aliran (flow zone).
Dalam perjalananya aliran airtanah ini seringkali melewati suatu lapisan akifer yang diatasnya memiliki lapisan penutup yang bersifat kedap air (impermeabel) hal ini mengakibatkan perubahan tekanan antara airtanah yang berada di bawah lapisan penutup dan airtanah yang berada diatasnya. Perubahan tekanan inilah yang didefinisikan sebagai airtanah tertekan (confined aquifer) dan airtanah bebas (unconfined aquifer). Dalam kehidupan sehari-hari pola pemanfaatan airtanah bebas sering kita lihat dalam penggunaan sumur gali oleh penduduk, sedangkan airtanah tertekan dalam sumur bor yang sebelumnya telah menembus lapisan penutupnya.
Airtanah bebas (water table) memiliki karakter berfluktuasi terhadap iklim sekitar, mudah tercemar dan cenderung memiliki kesamaan karakter kimia dengan air hujan. Kemudahannya untuk didapatkan membuat kecenderungan disebut sebagai airtanah dangkal (Padahal dangkal atau dalam itu sangat relatif lho).
Airtanah tertekan/ airtanah terhalang inilah yang seringkali disebut sebagai air sumur artesis (artesian well). Pola pergerakannya yang menghasilkan gradient potensial, mengakibatkan adanya istilah artesis positif ; kejadian dimana potensial airtanah ini berada diatas permukaan tanah sehingga airtanah akan mengalir vertikal secara alami menuju kestimbangan garis potensial khayal ini. Artesis nol ; kejadian dimana garis potensial khayal ini sama dengan permukaan tanah sehingga muka airtanah akan sama dengan muka tanah. Terakhir artesis negatif ; kejadian dimana garis potensial khayal ini dibawah permukaan tanah sehingga muka airtanah akan berada di bawah permukaan tanah..
Jadi, kalau tukang sumur bilang bahwa dia akan membuat sumur artesis, itu artinya dia akan mencari airtanah tertekan/airtanah terhalang ini.. belum tentu airnya akan muncrat dari tanah ;p
Lalu airtanah mana yang akan dicari?
Itulah yang pertama kali harus kita tentukan. Tiap jenis airtanah memerlukan metode pencarian yang spesifik. Tapi secara umum bisa kita bagi menjadi :
Metode berdasarkan aspek fisika (Hidrogeofisika) : Penekanannya pada aspek fisik yaitu merekonstruksi pola sebaran lapisan akuifer. Beberapa metode yang sudah umum kita dengar dalam metode ini adalah pengukuran geolistrik yang meliputi pengukuran tahanan jenis, induce polarisation (IP) dan lain-lain. Pengukuran lainnya adalah dengan menggunakan sesimik, gaya berat dan banyak lagi.
Metode berdasarkan aspek kimia (Hidrogeokimia) : Penekanannya pada aspek kimia yaitu mencoba merunut pola pergerakan airtanah. Secara teori ketika air melewati suatu media, maka air ini akan melarutkan komponen yang dilewatinya. Sebagai contoh air yang telah lama mengalir di bawah permukaan tanah akan memiliki kandungan mineral yang berasal dari batuan yang dilewatinya secara melimpah.kembali lagi ke kalimat awal, Pertanyaan diatas seringkali muncul ketika sumber air yang kita gunakan selama ini seperti air sungai, danau atau air hujan tidak bisa kita dapatkan. Satu hal yang pasti ini adalah salahsatu jenis air juga.Hanya dikarenakan jenis air ini tidak terlihat secara langsung, banyak kesalahfahaman dalam masalah ini. Banyak orang secara umum menganggap airtanah itu sebagai suatu danau atau sungai yang mengalir di bawah tanah. Padahal, hanya dalam kasus dimana suatu daerah yang memiliki gua dibawah tanahlah kondisi ini adalah benar. Secara umum airtanah akan mengalir sangat perlahan melalui suatu celah yang sangat kecil dan atau melalui butiran antar batuan.
(Model aliran airtanah melewati rekahan dan butir batuan)
Batuan yang mampu menyimpan dan mengalirkan airtanah ini kita sebut dengan akifer. Bagaimana interaksi kita dalam penggunaan airtanah? Yang alami adalah dengan mengambil airtanah yang muncul di permukaan sebagai mataair atau secara buatan. Untuk pengambilan airtanah secara buatan, mungkin analogi yang baik adalah apabila kita memegang suatu gelas yang berisi air dan es. Apabila kita masukkan sedotan, maka akan terlihat bahwa air yang berada di dalam sedotan akan sama dengan tinggi air di gelas. Ketika kita menghisap air dalam gelas tersebut terus menerus pada akhirnya kita akan menghisap udara, apabila kita masih ingin menghisap air yang tersimpan diantara es maka kita harus menghisapnya lebih keras atau mengubah posisi sedotan. Nah konsep ini hampirlah sama dengan teknis pengambilan airtanah dalam lapisan akifer (dalam hal ini diwakili oleh es batu) dengan menggunakan pompa (diwakili oleh sedotan)
Hal yang menarik, jika kita tutup permukaan sedotan maka akan terlihat bahwa muka air di dalam sedotan akan berbeda dengan muka air didalam gelas. Perbedaan ini akan mengakibatkan pergerakan air. Sama dengan analog ini, airtanahpun akan bergerak dari tekanan tinggi menuju ke tekanan rendah. Perbedaan tekanan ini secara umum diakibatkan oleh gaya gravitasi (perbedaan ketinggian antara daerah pegunungan dengan permukaan laut), adanya lapisan penutup yang impermeabel diatas lapisan akifer, gaya lainnya yang diakibatkan oleh pola struktur batuan atau fenomena lainnya yang ada di bawah permukaan tanah. Pergerakan ini secara umum disebut gradien aliran airtanah (potentiometrik). Secara alamiah pola gradien ini dapat ditentukan dengan menarik kesamaan muka airtanah yang berada dalam satu sistem aliran airtanah yang sama.
Mengapa pergerakan atau aliran airtanah ini menjadi penting? Karena disinilah kunci dari penentuan suatu daerah kaya dengan airtanah atau tidak. Perlu dicatat : tidak seluruh daerah memiliki potensi airtanah alami yang baik.
Model aliran airtanah itu sendiri akan dimulai pada daerah resapan airtanah atau sering juga disebut sebagai daerah imbuhan airtanah (recharge zone). Daerah ini adalah wilayah dimana air yang berada di permukaan tanah baik air hujan ataupun air permukaan mengalami proses penyusupan (infiltrasi) secara gravitasi melalui lubang pori tanah/batuan atau celah/rekahan pada tanah/batuan.
(Model siklus hidrologi, dimodifikasi dari konsep Gunung Merapi-GunungKidul)
Proses penyusupan ini akan berakumulasi pada satu titik dimana air tersebut menemui suatu lapisan atau struktur batuan yang bersifat kedap air (impermeabel). Titik akumulasi ini akan membentuk suatu zona jenuh air (saturated zone) yang seringkali disebut sebagai daerah luahan airtanah (discharge zone). Perbedaan kondisi fisik secara alami akan mengakibatkan air dalam zonasi ini akan bergerak/mengalir baik secara gravitasi, perbedaan tekanan, kontrol struktur batuan dan parameter lainnya. Kondisi inilah yang disebut sebagai aliran airtanah. Daerah aliran airtanah ini selanjutnya disebut sebagai daerah aliran (flow zone).
Dalam perjalananya aliran airtanah ini seringkali melewati suatu lapisan akifer yang diatasnya memiliki lapisan penutup yang bersifat kedap air (impermeabel) hal ini mengakibatkan perubahan tekanan antara airtanah yang berada di bawah lapisan penutup dan airtanah yang berada diatasnya. Perubahan tekanan inilah yang didefinisikan sebagai airtanah tertekan (confined aquifer) dan airtanah bebas (unconfined aquifer). Dalam kehidupan sehari-hari pola pemanfaatan airtanah bebas sering kita lihat dalam penggunaan sumur gali oleh penduduk, sedangkan airtanah tertekan dalam sumur bor yang sebelumnya telah menembus lapisan penutupnya.
Airtanah bebas (water table) memiliki karakter berfluktuasi terhadap iklim sekitar, mudah tercemar dan cenderung memiliki kesamaan karakter kimia dengan air hujan. Kemudahannya untuk didapatkan membuat kecenderungan disebut sebagai airtanah dangkal (Padahal dangkal atau dalam itu sangat relatif lho).
Airtanah tertekan/ airtanah terhalang inilah yang seringkali disebut sebagai air sumur artesis (artesian well). Pola pergerakannya yang menghasilkan gradient potensial, mengakibatkan adanya istilah artesis positif ; kejadian dimana potensial airtanah ini berada diatas permukaan tanah sehingga airtanah akan mengalir vertikal secara alami menuju kestimbangan garis potensial khayal ini. Artesis nol ; kejadian dimana garis potensial khayal ini sama dengan permukaan tanah sehingga muka airtanah akan sama dengan muka tanah. Terakhir artesis negatif ; kejadian dimana garis potensial khayal ini dibawah permukaan tanah sehingga muka airtanah akan berada di bawah permukaan tanah..
Jadi, kalau tukang sumur bilang bahwa dia akan membuat sumur artesis, itu artinya dia akan mencari airtanah tertekan/airtanah terhalang ini.. belum tentu airnya akan muncrat dari tanah ;p
Lalu airtanah mana yang akan dicari?
Itulah yang pertama kali harus kita tentukan. Tiap jenis airtanah memerlukan metode pencarian yang spesifik. Tapi secara umum bisa kita bagi menjadi :
Metode berdasarkan aspek fisika (Hidrogeofisika) : Penekanannya pada aspek fisik yaitu merekonstruksi pola sebaran lapisan akuifer. Beberapa metode yang sudah umum kita dengar dalam metode ini adalah pengukuran geolistrik yang meliputi pengukuran tahanan jenis, induce polarisation (IP) dan lain-lain. Pengukuran lainnya adalah dengan menggunakan sesimik, gaya berat dan banyak lagi.
Metode manakah yang terbaik?
Kombinasi dari kedua metode ini akan saling melengkapi dan akan memudahkan kita untuk mengetahui lebih lengkap mengenai informasi keberadaan airtanah di daerah kita.Selamat mencari airtanah… untuk kehidupan yang lebih baik.
Kombinasi dari kedua metode ini akan saling melengkapi dan akan memudahkan kita untuk mengetahui lebih lengkap mengenai informasi keberadaan airtanah di daerah kita.Selamat mencari airtanah… untuk kehidupan yang lebih baik.
Monday, November 23, 2009
PWL Reduction By Splitting Flow
Display problem ? Click HERE
As discussed in "Measures & Technique In Eliminating / Minimizing PWL", one of the measures to reduce Sound Power Level (PWL) at sources PWL is to split the flow. Half the original flow would result approximately 3 dB reduction. This post will discuss how this 3 dB reduction is derived.
A common acceptable method to predict Sound Power Level (PWL in dB) of AIV source is as follow :
A common acceptable method to predict Sound Power Level (PWL in dB) of AIV source is as follow :
Refer to "Sound Power Level (PWL) Prediction from AIV Aspect" for more discussion on above equatio.
Above equation will provide PWLW for a stream with W mass flow. If the stream is split into two stream, the mass flow will be W/2.
Sound Power level for single half-stream (W/2),
PWLW/2 = PWLW + 10Log [(1/2)^2]
PWLW/2 = PWLW - 6
When two half-streams with PWLW/2 are mixed, the resultant PWL of two half-streams may be estimated base on method as discussed in "Calculate Combined Sound Power Level (PWL)".
From this post,
Both half-streams have same PWL. The PWL difference (PWL,diff) is zero (0).
PWL adder = 10 ^ (0.4771 - 0.0795 x PWL,diff)
PWL adder = 10 ^ (0.4771 - 0.0795 x 0)
PWL adder = 3 dB
Both half-streams have same PWL.
Maximum PWL = PWLW/2 = PWLW - 6
Therefore, Combined PWL is :
Combined PWL = PWLW/2 - PWL adder
Combined PWL = PWLW - 6 - 3
Combined PWL = PWLW - 3
So, half the flow will results approximately 3 dB reduction from total flow.
Ref.
i) "Designing Piping Systems Against Acoustically Induced Structural Fatigue", E.L. Eisinger, Journal of Pressure Vessel Technology, Aug 1997.
Related Topic
Above equation will provide PWLW for a stream with W mass flow. If the stream is split into two stream, the mass flow will be W/2.
Sound Power level for single half-stream (W/2),
PWLW/2 = PWLW + 10Log [(1/2)^2]
PWLW/2 = PWLW - 6
When two half-streams with PWLW/2 are mixed, the resultant PWL of two half-streams may be estimated base on method as discussed in "Calculate Combined Sound Power Level (PWL)".
From this post,
Combined PWL = Maximum PWL + PWL Adder
Both half-streams have same PWL. The PWL difference (PWL,diff) is zero (0).
PWL adder = 10 ^ (0.4771 - 0.0795 x PWL,diff)
PWL adder = 10 ^ (0.4771 - 0.0795 x 0)
PWL adder = 3 dB
Both half-streams have same PWL.
Maximum PWL = PWLW/2 = PWLW - 6
Therefore, Combined PWL is :
Combined PWL = PWLW/2 - PWL adder
Combined PWL = PWLW - 6 - 3
Combined PWL = PWLW - 3
So, half the flow will results approximately 3 dB reduction from total flow.
Ref.
i) "Designing Piping Systems Against Acoustically Induced Structural Fatigue", E.L. Eisinger, Journal of Pressure Vessel Technology, Aug 1997.
Related Topic
- Calculate Combined Sound Power Level (PWL)
- Measures & Technique In Eliminating / Minimizing PWL
- Principle in Eliminating & Minimizing AIV Impact
- Energy Input or E-method In Assessing AIV
- Assess AIV with "D/t-method" with Polynomial PWL Limit Line
- Assess AIV with "D/t-method" with Logarithm PWL Limit Line
Saturday, November 21, 2009
ikatan hidrogen
Ikatan Antarmolekul – Ikatan Hidrogen
Terdapat banyak unsur yang membentuk senyawa dengan hidrogen – ditunjuk sebagai “hidrida”. Jika kamu mem-plot-kan titik didih hidrida unsur golongan 4, kamu akan menemukan bahwa titik didih tersebut naik seiring dengan menurunnya letak unsur pada golongan.
Ehem ehem.... gimana ya mulainya... ^_^”
ok gini aja deh,, asal muasal sya membuat halaman ini sih awalnya karena waktu itu ada keharusan yang membuat sya mesti mencari sebanyak-banyaknya data yang menyangkut materi ikatan hydrogen, so singkat kata sya sering menjalajahi di berbagai macam tempat melalui jendela alias pintunya doraemon, eh salah!! Maksudnya melalui jendela google... selain itu sya juga mencari melalui referensi lain dari buku-buku yang keberadaannya lumayan susah di cari di samarinda tentang materi ini.... huh... akhirnya pada waktu itu sya sering buka-buka semua situs dari yang bahasa Indonesia, inggris punya, cong ceng cing ( cina dan japan maksudnya), dan bahasa2 yg nggk jelas lainnya, wuh sempat nggk habis fikir kalau waktu itu semangat banget nyari yang berhu... ( STOP!!!) kebanyakan cerita kamu ya.! Langsung aja deh ke inti apa yang udah kamu dapat..! nggk sabar nih pingin pelajari...
ok ok tuan merah... jangan marah ya,, ntar mukanya cepet keriput lho... ehehe
ok, singkat cerita ini dia materi yang sebagian sya tulis di halaman ini...
semoga bermanfaat... ^_^”
Halaman ini menjelaskan asal mula ikatan hidrogen – dayatarik antarmolekul yang terbentuk relatif kuat.
Keterangan untuk ikatan hidrogen
Terdapat banyak unsur yang membentuk senyawa dengan hidrogen – ditunjuk sebagai “hidrida”. Jika kamu mem-plot-kan titik didih hidrida unsur golongan 4, kamu akan menemukan bahwa titik didih tersebut naik seiring dengan menurunnya letak unsur pada golongan.
Kenaikan titik didih terjadi karena molekul memperoleh lebih banyak elektron, dan karena itu kekuatan dispersi van der Walls menjadi lebih besar.
Jika kamu mengulangi hal yang sama untuk hidrida golongan 5, 6, 7 sesuatu yang aneh terjadi.
Meskipun secara umum kecenderungannya sama persis dengan yang terjadi pada golongan 4 (dengan alasan yang sama), titik didih hidrida unsur pertama pada tiap golongan melonjak tinggi secara tidak normal.
Pada kasus NH3, H2O dan HF seharusnya terjadi penambahan gaya dayatarik antarmolekul, yang secara signifikan memerlukan energi kalor untuk memutuskannya. Gaya antarmolekul yang relatif kuat ini digambarkan dengan ikatan hidrogen.
Asal mula ikatan hidrogen
Molekul-molekul yang memiliki kelebihan ikatan adalah:
________________________________________
Catatan: Garis yang tebal menunjukkan ikatan berada pada bidang atau pada kertas. Ikatan putus-putus mengarah ke belakang bidang atau kertas berarti menjauh dari kamu, dan bentuk baji (wedge-shaped) mengarah ke arah kamu.
Harus diperhatikan bahwa tiap molekul tersebut:
• Hidrogen tertarik secara langsung pada salah satu yang unsur yang paling elektronegatif, menyababkan hidrogen memperoleh jumlah muatan positif yang signifikan
• Tiap-tiap unsur yang mana hidrogen tertarik padanya tidak hanya negatif secara signifikan, tetapi juga memiliki satu-satunya pasangan mandiri yang â€Å“aktifâ€�.
Pasangan mandiri pada tingkat-2 memiliki elektron yang dikandungnya pada volume ruang yang relatif kecil yang mana memiliki densitas yang tinggi muatan negatif. Pasangan mandiri pada tingkat yang lebih tinggi lebih tersebar dan tidak terlalu atraktif pada sesuatu yang positif.
Mempertimbangkan dua molekul air yang datang bersamaan.
Hidrogen + tertarik dengan kuat pada pasangan mendiri yang mana hampir sama jika kamu memulai untuk membentuk ikatan koordinasi (kovalen dativ). Hal ini tidak terjadi sejauh itu, tetapi dayatarik lebih kuat dibandingkan dayatarik dipol-dipol yang biasa.
Ikatan hidrogen memiliki kekuatan sepersepuluh rata-rata ikatan kovalen, dan secara konstan diputushubungkan pada molekul air. Jika kamu mengibaratkan ikatan kovalen antara oksigen dan hidrogen sebagai hubungan pernikahan yang stabil, ikatan hidrogen hanya berstatus â€Å“teman yang baikâ€�. Pada skala yang sama, dayatarik van der Waals hanya menunjukkan perkenalan belaka!
Air sebagai contoh “sempurna” ikatan hidrogen
Harus diperhatikan bahwa tiap molekul air dapat berpotensi membentuk empat ikatan hidrogen dengan molekul air disekelilingnya. Terdapat jumlah hidrogen + yang pasti dan pasangan mandiri karena itu tiap masing-masing molekul air dapat terlibat dalam ikatan hidrogen.
Hal inilah yang menjadi sebab kenapa titik didih air lebih tinggi dibandingkan amonia atau hidrogen fluorida. Pada kasus amonia, jumlah ikatan hidrogen dibatasi oleh fakta bahwa tiap atom nitrogen hanya mempunyai satu pasang elektron mandiri. Pada golongan molekul amonia, tidak terdapat cukup pasangan mandiri untuk mengelilinginya untuk memuaskan semua hidrogen.
Pada hidrogen fluorida, masalah yang muncul adalah kekurangan hidrogen. Pada molekul air, hal itu terpenuhi dengan baik. Air dapat digambarkan sebagai sistem ikatan hidrogen yang “sempurna”.
Contoh yang lebih kompleks dari ikatan hidrogen
Hidrasi ion negatif
Ketika sebuah substansi ionik dialarutkan dalam air, molekul air berkelompok disekeliling ion yang terpisah. Proses ini disebut hidrasi.
Air seringkali terikat pada ion positif melalui ikatan koordinasi (kovalen dativ). Air berikatan dengan ion negatif menggunakan ikatan hidrogen
Diagram menunjukkan potensi terbentuknya ikatan hidrogen pada ion klorida, Cl-. Meskipun pasangan mandiri pada ion klor terletak pada tingkat-3 dan secara normal tidak akan cukup aktif utnuk membentuk ikatan hidrogen, pada kasus ini mereka terbentuk lebih atraktif melalui muatan negatif penuh pada klor.
Meskipun ion negatif rumit, hal itu akan selalu menjadi pasangan mandiri yang mana atom hidrogen dari molekul air dapat membentuk ikatan hidrogen juga.
Ikatan hidrogen pada alkohol
Alkohol adalah molekul organik yang mengandung gugus -O-H.
Setiap molekul yang memiliki atom hidrogen tertarik secara langsung ke oksigen atau nitrogen adalah ikatan hidrogen yang cakap. Seperti molekul yang akan selalu memiliki titik didih yang tinggi dibandingkan molekul yang berukuran hampir sama yang mengandung gugus -O-H atau -N-H. Ikatan hidrogen membuat molekul lebih melekat (stickier), dan memerlukan lebih banyak energi kalor untuk memisahkannya.
Etanol, CH3CH2-O-H, dan metoksimetana, CH3-O-CH3, keduanya memiliki rumus molekul yang sama, C2H6O.
Keduanya memiliki jumlah elektron yang sama, dan panjang molekul yang sama. Dayatarik van der Waals (baik antara gaya dispersi dan dayatarik dipol-dipol) pada keduanya akan sama.
Bagaimanapun, etanol memiliki atom hirogen yang tertarik secara langsung pada oksigen – dan oksigen tersebut masih memiliki dua pasangan mandiri seperti pada molekul air. Ikatan hidrigen dapat terjadi antara molekul etanol, meskipun tidak seefektif pada air. Ikatan hidrogen terbatas oleh fakta bahwa hanya ada satu atom hidrogen pada tiap molekul etanol dengan cukup muatan +.
Pada metoksimetana, pasangan mandiri pada oksigen masih terdapat disana, tetapi hidrogen tidak cukup + untuk pembentukan ikatan hidrogen. Kecuali pada beberapa kasus yang tidak biasa, atom hidrogen tertarik secara langsung pada atom yang sangat elektronegatif untuk menjadikan ikatan hidrogen.
Titik didih etanol dan metoksimetana menunjukkan pengaruh yang dramatis bahwa ikatan hidrogen lebih melekat pada molekul etanol:
etanol (dengan ikatan hidrogen) 78.5°C
metiksimetana (tanpa ikatan hidrogen) -24.8°C
Ikatan hidrogen pada etanol menghasilkan titik didih sekitar 100°C.
Sangat penting untuk merealisasikan bahwa ikatan hidrogen eksis pada penambahan (in addition) dayatarik van der Waals. Sebagai contoh, semua molekul berikut ini mengandung jumlah elektron yang sama, dan dua yang pertama memiliki panjang yang sama. Titik didih yang paling tinggi butan-1-ol berdasarkan pada penambahan ikatan hidrogen.
Dengan membandingkan dua alkohol (yang mengandung gugus -O-H), kedua titik didih adalah tinggi karena penambahan ikatan hidrogen berdasarkan pada tertariknya hidrogen secara langsung pada oksigen ? tetapi sebenarnya tidak sama.
Titik didih 2-metilproan-1-ol tidak cukup tinggi seperti butan-1-ol karena percabangan pada molekul menjadikan dayatarik van der Waals kurang efektif dibandingkan pada butan-1-ol yang lebih panjang.
Ikatan hidrogen pada molekul organik yang mengandung nitrogen
Ikatan hidrogen juga terjadi pada molekul organik yang mengandung gugus N-H – pendeknya terjadi juga ada amonia. Contohnya adalah molekul sederhana seperti CH3NH2 (metilamin) sampai molekul yang panjang seperti protein dan DNA.
Dua untai double helix yang terkenal pada DNA berikatan satu sama lain melalui ikatan hidrogen antara atom hidrogen yang tertarik oleh nitrogen pada salah satu untai, dan pasangan mandiri pada nitrogen atau oksigen yang lain yang terletai pada untai yang lain
Jenis ikatan kimia lain a. Ikatan logam
Setelah penemuan elektron, daya hantar logam yang tinggi dijelaskan dengan menggunakan model elektron bebas, yakni ide bahwa logam kaya akan elektron yang bebas bergerak dalam logam. Namun, hal ini tidak lebih dari model. Dengan kemajuan mekanika kuantum, sekitar tahun 1930, teori MO yang mirip dengan yang digunakan dalam molekul hidrogen digunakan untuk masalah kristal logam.
Elektron dalam kristal logam dimiliki oleh orbital-orbital dengan nilai energi diskontinyu, dan situasinya mirip dengan elektron yang mengelilingi inti atom. Namun, dengan meingkatnya jumlah orbital atom yang berinteraksi banyak, celah energi dari teori MO menjadi lebih sempit, dan akhirnya perbedaan antar tingkat-tingkat energi menjadi dapat diabaikan. Akibatnya banyak tingkat energi akan bergabung membentuk pita energi dengan lebar tertentu. Teori ini disebut dengan teori pita.
Tingkat energi logam magnesium merupakan contoh teori pita yang baik (Gambar 3.8). Elektron yang ada di orbital 1s, 2s dan 2p berada di dekat inti, dan akibatnya terlokalisasi di orbital-orbital tersebut. Hal ini ditunjukkan di bagian bawah Gambar 3.8. Namun, orbital 3s dan 3p bertumpang tindih dan bercampur satu dengan yang lain membentuk MO. MO ini diisi elektron sebagian, sehingga elektron-elektron ini secara terus menerus dipercepat oleh medan listrik menghasilkan arus listrik. Dengan demikian, magnesium adalah konduktor.
Bila orbital-orbital valensi (s) terisi penuh, elektron-elektron ini tidak dapat digerakkan oleh medan listrik kecuali elektron ini lompat dari orbital yang penuh ke orbital kosong di atasnya. Hal inilah yang terjadi dalam isolator.
b. Ikatan hidrogen
Awalnya diduga bahwa alasan mengapa hidrogen fluorida HF memiliki titik didih dan titik leleh yang lebih tinggi dibandingkan hidrogen halida lain (gambar 3.9) adalah bahwa HF ada dalam bentuk polimer. Alasan tepatnya tidak begitu jelas untuk kurun waktu yang panjang. Di awal tahunh 1920-an, dengan jelas diperlihatkan bahwa polimer terbentuk antara dua atom flourin yang mengapit atom hidrogen.
Sangat tingginya titik didih dan titik leleh air juga merupakan masalah yang sangat menarik. Di awal tahun 1930-an, ditunjukkan bahwa dua atom oksigen membentk ikatan yang mengapit hidrogen seperti dalam kasus HF (gambar 3.9). Kemudian diketahui bahwa ikatan jenis ini umum didapatkan dan disebut dengan ikatan hidrogen.
Ikatan hidrogen dengan mudah terbentuk bila atom hidroegen terikat pada atom elektronegatif seperti oksigen atau nitrogen. Fakta bahwa beberapa senyawa organik dengan gugus hidroksi -OH atau gugus amino -NH2 relatif lebih larut dalam air disebabkan karena pembentukan ikatan hidrogen dengan molekul air. Dimerisasi asam karboksilat seperti asama asetat CH3COOH juga merupakan contoh yang sangat baik adanya ikatan hidrogen.
Ikatan Van der Waals
Gaya dorong pembentukan ikatan hidrogen adalah distribusi muatan yang tak seragam dalam molekul, atau polaritas molekul (dipol permanen). Polaritas molekul adalah sebab agregasi molekul menjadi cair atau padat. Namun, molekul non polar semacam metana CH4, hidrogen H2 atau He (molekul monoatomik) dapat juga dicairkan, dan pada suhu yang sangat rendah, mungkin juga dipadatkan. Hal ini berarti bahwa ada gaya agreagasi antar molekul-molekul ini.. Gaya semacam ini disebut dengan gaya antarmolekul.
Ikatan hidrogen yang didiskusikan di atas adalah salah satu jenis gaya antarmolekul. Gaya antarmolekul khas untuk molekul non polar adalah gaya van der Waals. Asal usul gaya ini adalah distribusi muatan yang sesaat tidak seragam (dipol sesaat) yang disebabkan oleh fluktuasi awan elektron di sekitar inti. Dalam kondisi yang sama, semakin banyak jumlah elektron dalam molekul semakin mudah molekul tersebut akan dipolarisasi sebab elektron-elektronnya akan tersebar luas. Bila dua awan elektron mendekati satu sama lain, dipol akan terinduksi ketika awan elektron mempolarisasi sedemikian sehingga menstabilkan yang bermuatan berlawanan. Dengan gaya van der Waals suatu sistem akan terstabilkan sebesar 1 kkal mol-1. Bandingkan harga ini dengan nilai stabilisasi yang dicapai dengan pembentukan ikatan kimia (dalam orde 100 kkal mol-1). Kimiawan kini sangat tertarik dengan supramolekul yang terbentuk dengan agregasi molekul dengan gaya antarmolekul.
latihan, Kekuatan ikatan ion
Energi interaksi antara dua muatan listrik Q1 dan Q2 (keduanya adalah bilangan bulat positif atau negatif) yang dipisahkan dengan jarak r (nm) adalah E = 2,31×10-19 Q1Q2/r (J nm). Hitung energi interaksi untuk kasus: (1) interaksi antara Na+ dan Cl– dengan r = 0,276 nm; (2) interaksi antara Mg2+ dan O2- dengan r = 0,25 nm.
Jawab
(1) E = 2,31 x 10-19 (+1)(-1)/(0,276) = -8,37 x 10-19 (J); atau untuk per mol,
(2) E = 2,31×10-19 (+2)(-2)/(0,205) = -4,51 x 10-18 (J); atau per mol,
E(mol) = -8,37 x 10-19 x 6,022 x 1023 J = 5,04 x 105 J = 504,0 kJ.
E(mol) = -4,51 x 10-18 x 6,022 x 1023 J = 2,71 x 105 J = 271,0 kJ
Alasan mengapa yang kedua lebih besar adalah lebih besarnya muatan ion dan kedua karena jarak antar ionnya lebih pendek.
Rumus struktur Lewis
Dengan mengikuti aturan oktet, tuliskan rumus struktur Lewis senyawa-senyawa berikut:
(a) hidrogen fluorida HF (b) nitrogen N2 (c) metana CH4 (d) karbon tetrafluorida CF4 (e) kation nitrosil NO+ (f) ion karbonat CO32- (g) asetaldehida HCHO
jawab:
Senyawa-senyawa boron-nitrogen
Jawablah pertanyaan-pertanyaan berikut:
(1) Tuliskan konfigurasi elektron boron dalam keadaan dasar. (2) Gambarkan rumus struktur Lewis BF3. (3) Gambarkan rumus struktur Lewis NH3. (4) Reaksi antara NH3 dan BF3 menghasilkan senyawa adisi. Jelaskan mengapa reaksi ini berlangsung, dan sarankan struktur senyawa adisinya.
Jawab
(1) 1s22s23p1
GAYA ANTAR MOLEKUL
perbedaan sifat fisis (titik didih, titik beku) berdasarkan perbedaan Gaya Antar Molekul.
________________________________________ SIFAT FISIK SUATU MOLEKUL
Sifat fisik suatu molekul ditentukan oleh gaya tarik antar molekul antara lain titik didih dan titik leleh.
Marilah kita pelajari pengaruh masing-masing gaya tarik antar molekul terhadap titik didih molekulnya suatu molekul
Gaya London mengakibatkan titik leleh dan titik didih molekulnya menjadi lebih rendah daripada molekul lain dengan massa atom relatif (Mr) sama yng tidak memiliki Gaya London. Jika molekul-molekulnya kecil, zat-zat ini biasanya berbentuk gas pada suhu kamar.
Molekul yang mempunyai gaya tarik-menarik dipol-dipol menyebabkan titik didih dan titik leleh lebih tinggi daripada molekul yang memiliki Gaya London pada molekul dengan massa molekul relatif sama. Hal ini karena gaya tarik dipol-dipol lebih kuat daripada Gaya London.
Bagaimana titik didih dan titik leleh senyawa yang massa molekul relatifnya (Mr) berbeda jauh sedangkan keduanya bersifat polar ?
Silahkan Anda perhatikan tabel berikut ?
Tabel 3. Hubungan kepolaran dengan titik didih
Dari tabel dapat Anda lihat bahwa HI memiliki titik didih yang lebih tinggi daripada HCl sehingga lebih polar dari HI. Massa molekul relatif HI lebih besar daripada HCl sehingga titik didih HI lebih tinggi dari HCl. Hal ini menunjukkan bahwa Gaya London lebih dapat digunakan dalam membandingkan sifat zat dengan massa molekul relatif yang jauh berbeda.
Selanjutnya, bagaimana pengaruh ikatan hidrogen terhadap sifat fisik suatu senyawa ?
Ikatan hidrogen tidak hanya berpengaruh pada titik didih dan titk leleh suatu zat tetapi juga kalarutannya dalam suatu pelarut.
Senyawa yang berikatan hidrogen mudah larut dalam senyawa lain yang juga berikatan hidrogen. Contohnya NH3 dalam H2O seperti pada gambar 11.
Gambar 11 . Ikatan Hidrogen antara NH3 dengan air.
Senyawa organik-alkohol, asam karboksilat, amina, glukosa-larut dalam air karena membentuk ikatan hidrogen dengan molekul air.
Gambar 12. Ikatan Hidrogen antar Molekul Etanol dengan air
Senyawa yang memilih ikatan hydrogen akan memilih titik didih lebih tinggi dari pada molekul yang memilih ikatan Van Der Waals atau gaya tarik dipol-dipol. Senyawa hydrida dari unsur golongan IV, V dan VI memilih gaya Van Der Waals yang bertambah dari atas ke bawah setiap golongannya, sehingga titik didih dan titik lelehnya seharusnya meningkat tetepi kenyataannya berbeda.
Perhatikan gambar 13 grafik berikut ini.
Gambar 13. Titik leleh dan titik didih gas mulia dan
senyawa Hidrogen dari golongan IVA,VA,VIA dan VIIA.
Pada gambar 13 ditunjukan titik didih dan titik leleh untuk lima golongan zat. Perhatikan grafik Ne Ke Xe dan CH4 ke SnH4, molekul non polar saling tarik menarik oleh dipol terimbas sesaat atau Gaya London. Kedua grafik ini untuk membandingkan titik didih dari pasangan molekul yang Massa Molekul relatif hampir sama. Perhatikan Ne dan CH4. molekul gas mulia mempunyai distribusi elektron yang sederhana sedangkan CH4 merupakan tetrahedron (segi empat) yang menggembung dan saling tarik menarik lebih kuat. Akibatnya titik didih CH4 lebih tinggi daripada Ne.
Bandingkan molekul yang strukturnya berlainan tetapi massa molekul relatifnya hampir sama.
Perhatikan titk didih Ve, SnH4, HI, SbH3, dan H2Te. Tiga yang terakhir ini memiliki titik didh yang lebih tinggi karena molekul-molekul ini merupakan senyawa polar yang memerlukan energi kinetik yang lebih besar untuk memisahkan masing-masing unsurnya satu sama lain.
Untuk lebih memperjelas pemahaman, gambar 13 dapat kita uraikan satu persatu, sebagai berikut :
Gambar 15. Titik leleh dan titik didih senyawa dari unsur
golongan VA dari periode 2 sampai 5.
Gambar 15. Titik leleh dan titik didih senyawa dari unsur
golongan VA dari periode 2 sampai 5.
Gambar 16. Titik leleh dan titik didih senyawa dari unsur
golongan VIIA dari periode 2 sampai 5.
Gambar 17. Titk leleh dan titik didih senyawa dari unsur
golongan IVA dari periode 2 sampai 5.
Gambar 18. Titik leleh dan titik didih unsur
golongan gas mula dari periode 2 sampai 5.
Dapat Anda perhatikan unsur satu golongan (gambar 18) akan memiliki titik didih dan titik leleh yang bertambah, sesuai dengan bertambahnya nomor atom, massa atom relatif dan perioda.
Senyawa yang memiliki ikatan Hidrogen akan memiliki titk didih dan titik leleh yang lebih tinggi dari senyawa lain yang tidak memiliki ikatan hidrogen. Perhatikan gambar 14 sampai 17.
Bandingkanlah molekul yang memiliki ikatan hidrogen (HF, NH3, H2O) dengan molekul segolongannya.
Titik didih H2O lebih tinggi daripada H2S, H2Se dan H2Te. Begitu pula titik didih NH3 lebih tinggi daripada PH3, AsH3, SbH3.
Hal ini ternyata disebabkan terdapatnyan ikatan Hidrogen yang kuat antar molekul-molekulnya.
Bagaimana senyawa organik ?
Apakah ikatan Hidrogen dapat mempengaruhi titik didihnya juga ?
Coba Anda bandingkan titik didih propane dengan etanol menggunakan data dalam tabel 4.
Tabel 4. Hubungan titik didih dengan Mr senyawa organik
Etanol memiliki titik didih yang sangat tinggi dibandingkan dengan propana walaupun massa molekul relatif (Mr) keduanya tidak jauh berbeda. Hal ini terjadi karena dalam molekul etanol terdapat ikatan hidrogen sedangkan propana tidak. Perhatikan rumus struktur etanol dan propana berikut ini :
Gambar 19. Rumus struktur etanol dan propana
Akibat lain dari adanya ikatan hidrogen adalah terjadinya penyimpanan massa molekul relatif. Seperti halnya asam etanoat (asam asetat) atau dalam kehidupan sehari-hari dikenal dengan asam cuka, yang biasa di jumpai dalam wujud larutan tetapi dapat di jumpai dalam wujud gas. Wujud yang terakhir ini terjadi karena du molekul asam cuka bergabung bersama dengan ikatan hidrogen sehingga massa molekul relatifnya (Mr) menjadi 120, dua kali besar dari biasanya yaitu 60.
Terjadinya pengabungan dua molekul sehingga berpasangan di sebut “dimerisation”. Peristiwa ini dapat di gambarkan sebagai berikut :
Gambar 20. Rumus struktur dua molekul asam etanoat.
Senyawa yang membentuk ikatan hidrogen inter molekul akan memiliki titik didih dan titik leleh yang lebih tinggi dibandingkan dengan senyawa yang membentuk ikatan hidrogen intra molekul. Hal ini karena energi kinetik ikatan hidrogen inter molekul lebih besar dari pada ikatan hidrogen intra molokul.
A. Gaya Tarik Antar Molekul
Jika Molekul – molekul membentuk senyawa tentunya ada interaksi antar molekul tersebut seperti halnya keluarga, jika suatu keluarga dinyatakan sebagai senyawa dan anggota keluarga sebagai molekul, maka setelah kita mempelajari sifat masing – masing anggota keluarga tentunya kita akan mempelajari hubungan (interaksi) antar anggota keluarga tersebut. Gaya antar molekul pada modul ini dibatasi pada gaya tarik antara dua molekul atau lebih dari satu zat murni.
Pada bagian ini, akan dipelajari tiga macam gaya tarik antar molekul. Dua diantaranya sekaligus disebut gaya tarik Van der Waals. Gaya tarik yang lemah disebabkan oleh dipol imbasan sesaat, yang terjadi antara semua molekul, bahkan juga molekul yang non polar sekalipun, Gaya tarik Van der Waals yang kuat, disebut gaya tarik dipol-dipol, terjadi antara molekul yang memiliki momen dipol permanen. Gaya tarik ketiga lebih kuat dari gaya Van der Waals yang terjadi hanya antar molekul tertentu dan kemudian disebut Ikatan Hidrogen.
1. Gaya London
Seorang ahli fisika dari Jerman Fritz London, tahun 1930 menguraikan terjadinya tarikan yang lemah disebabkan oleh dipol imbasan sekejap atau sesaat yang kemudian dikenal Gaya London.
Terjadinya tarikan antar elektron satu molekul dan inti molekul yang lain dapat dibayangkan sebagai akibat menggesernya posisi atau getaran (Vibrasi) elektron dan inti-inti itu. Suatu getaran dalam sebuah molekul mengimbas (menginduksi) suatu geseran elektron-elektron suatu molekul yang disebelahnya seperti gambar 5.
Gambar 5. Diagram getaran elektron terhadap inti-inti
dalam dua atom dari suatu gas mulia.
Atom simetris (tengah bersifat non polar) tetapi getaran yang mengimbas gaya tarik dipol sesaat antara atom-atom sebelahnya.
Perhatikan bahwa posisi inti tidak berubah.
Bila beberapa molekul berkumpul bersama-sama seperti dalam cair, geseran-geseran disingkronkan, sehingga terdapat suatu tarikan total antara banyak molekul yang bersebelahan. Dipol-dipol ini dikatakan bersifat sesaat, karena getaran itu milyaran kali dalam suatu detik.
Pada saat berikutnya dipol itu hilang, atau mungkin arah polaritas telah dibalik. Gaya London ini yang menyebabkan adanya tarikan antara molekul-molekul senyawa non polar.
Ingatkah Anda bagaimana caranya membedakan molekul polar dengan non polar? Jika tidak bukalah dan baca kembali modul Kim X.04 bagian kepolaran.
Molekul-molekul polar besar lebih efektif ditarik satu sama lain daripada molekul kecil. Marilah kita bandingkan molekul metana, CH4 dengan propana CH3 CH2 CH3.
Perhatikan rumus struktur keduanya.
Apa yang dapat Anda simpulkan dari rumus struktur itu ?
Struktur molekul Propana lebih besar dari Metana sehingga tarikan yang terjadi antar dua molekul Propana lebih kuat dari pada dua molekul Metana. Contoh lain yang dapat kita perhatikan antara iod, I2, dan flour, F2. Manakah yang lebih kuat, molekul iod atau molekul flour ?
Apakah jawaban Anda molekul iod ?
Jika demikian, Anda benar.
Molekul dengan distribusi / penyebaran elektron yang besar dan baur ke segala arah saling menarik lebih kuat dari pada molekul – molekul yang elektronnya lebih kuat terikat. Molekul iod yang besar itu saling tarik – menarik dengan lebih kuat dari pada molekul flour yang lebih kecil.
Mudah tidaknya suatu molekul membentuk dipol sesaat disebut polarisabilitas. Hal ini berkaitan dengan masa molekul relatif (Mr) dan bentuk molekul. Masa molekul relatif berkaitan dengan jumlah elektron dalam molekul maka makin mudah mengalami polarisasi sehingga makin kuat gaya Londonnya.
Mari kita bandingkan molekul H2, N2, O2, dan Br2. Bagaimana urutan kekuatan gaya London molekul-molekul tersebut ?
Apakah jawaban Anda berikut ini ?
Urutan kekuatan Gaya London dari yang terlemah ke yang paling kuat adalah H2 — N2 — O2 — Br2 karena
MrBr2 > MrO2 > MrN2 > MrH2
Molekul yang bentuknya panjang lebih mudah mengalami polarisasi dibandingkan molekul yang kecil, padat dan simetris sehingga gaya London Pentana lebih kuat dari pada 2 – Metil Butana (Neo Petana).
Bagaimanakah akibat pergerakan elektron dalam orbital pada molekul polar? Pelajarilah uraian berikut?
2. Gaya Tarik Dipol – dipol
Molekul yang mempunyai momen dipol permanen dikatakan sebagai polar. Seperti gambar 6.
Gambar 6. Molekul diatom kovalen polar
Perhatikan bahwa anak panah yang menyatakan kepolaran digambar dari muatan positif parsial ke muatan negatif parsial.
Perhatikan pada gambar.
Gambar 7. Molekul tri atom polar dan non polar
Arah vektor menuju ke atom yang lebih elektronegatif ujung plus menunjukkan ke atom yang kurang elektronegatif. Gaya tarik antar dua molekul polar disebut Gaya tarik dipol-dipol. Tarikan ini lebih kuat dari pada tarikan antara molekul-molekul non polar.
Ikatan Hidrogen Lagi....
Tarikan antar molekul yang luar biasa kuatnya, dapat terjadi antara molekul-molekul, jika satu molekul mempunyai sebuah atom hidrogen yang terikat pada sebuah atom berelektronegativitas besar, dan molekul sebelahnya mempunyai sebuah atom berelektronegativitas tinggi yang mempunyai sepasang elektron menyendiri.
Inti hidrogen, yakni proton ditarik oleh sepasang elektron yang bersebelahan bolak-balik antara kedua atom tersebut. Tarikan antara dua molekul yang menggunakan bersama-sama sebuah proton disebut Ikatan Hidrogen.
Gambaran Ikatan Hidrogen Intra Molekul.
dimana x merupakan atom yang sangat elektronegatif , dan Y merupakan atom yang sangat elektronegatif dengan pasangan elektron bebas.
Ikatan hidrogen terbentuk hanya pada molekul yang mengandung nitrogen, oksigen ataupun flour.
Ikatan hidrogen dapat terjadi inter molekul dan intra molekul. Jika Ikatan hidrogen terjadi diantara molekul-molekul yang berbeda maka disebut ikatan hidrogen intermolekul atau antar molekul seperti senyawa 1,4 – dihidroksi benzena. Sedangkan bila ikatan hidrogen terjadi antara atom-atom dalam molekul yang sama maka disebut ikatan hidrogen intramolekul atau didalam molekul seperti senyawa 1,2 – dihidroksi benzena.
Gambar 8: Rumus struktur 1,2–dihidroksi benzena dan
1,4–dihidroksi benzena.
Senyawa 1,2 – Dihidroksi benzena memiliki ikatan hidrogen Intra molekul karena atom H dan atom O letaknya berdekatan dalam satu molekul. Berbeda halnya dengan 1,4 – Dihidroksi benzena letaknya gugus hidroksi (OH) saling berjauhan sehingga tidak memiliki ikatan hidrogen intramolekul. Perhatikan gambar 9 dan gambar 10.
Gambar 9. Ikatan Hidrogen Intramolekul pada senyawa
1,2 – Dihidroksi benzena
Gambar 10. Ikatan Hidrogen Intramolekul pada senyawa
1,2 – Dihidroksi benzena
Ikatan hidrogen
Ikatan hidrogen merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama. Tarikan antar molekul yang luar biasa kuatnya, dapat terjadi antara molekul-molekul, jika satu molekul mempunyai sebuah atom hidrogen yang terikat pada sebuah atom berelektronegativitas besar, dan molekul sebelahnya mempunyai sebuah atom berelektronegativitas tinggi yang mempunyai sepasang elektron menyendiri.
Inti hidrogen, yakni proton ditarik oleh sepasang elektron yang bersebelahan bolak-balik antara kedua atom tersebut. Tarikan antara dua molekul yang menggunakan bersama-sama sebuah proton disebut Ikatan Hidrogen.
Gambaran Ikatan Hidrogen Intra Molekul.
Ikatan hidrogen terbentuk hanya pada molekul yang mengandung nitrogen, oksigen ataupun flour.
Animasi diatas menunjukkan molekul kristal air (molekul polar) dalam bentuk liquid. Gaya tarik antara molekul polar yang mengandung hidrogen dengan pasangan elektron bebas dari molekul oksigen. Pada ikatan polar setiap atom hidrogen bermuatan agak positif sehingga dapat menarik elektron. Ikatan hidrogen menyebabkan titik didih dan titik leleh air tinggi bila dibandingkan molekul lain yang kecil tapi molekulnya nonpolar.
Hidrogen+ tertarik dengan kuat pada pasangan mendiri yang mana hampir sama jika kamu memulai untuk membentuk ikatan koordinasi (kovalen dativ). Hal ini tidak terjadi sejauh itu, tetapi dayatarik lebih kuat dibandingkan dayatarik dipol-dipol yang biasa.
Ikatan hidrogen memiliki kekuatan sepersepuluh rata-rata ikatan kovalen, dan secara konstan diputushubungkan pada molekul air. Jika kamu mengibaratkan ikatan kovalen antara oksigen dan hidrogen sebagai hubungan pernikahan yang stabil, ikatan hidrogen hanya berstatus teman yang baik. Pada skala yang sama, dayatarik van der Waals hanya menunjukkan perkenalan belaka!
Kelarutan senyawa
Tampak pada gambar diatas bahwa senyawa HF, H2O dan NH3 mempunyai titik didih yang luar biasa tinggi dibanding dengan anggota lainnya. Fakta ini menunjukkan bahwa dalam senyawa tersebut terdapat ikatan hidrogen. Ikatan jenis ini terjadi karena gaya elektrostatik yang khusus antara dipol-dipol. Adanya ikatan hidrigen antarmolekul menyebabkan titik senyawa relatif lebih tinggi dibandingkan dengan senyawa lain yang memilki berat molekul sebanding. Titik didih senyaea golongna alkohol lebih tinggi daripada senyawa golongan alkana, demikian juga titik didih air lebih tinggidaripada aseton. Pengaruh ikatan hidrogen terhadap titik leleh tidak begitu besar karena pada wujud padat jarak antarmolekul cukup berdekatan dan yang paling berperan terhadap titik leleh adalah berat molekul zat dan bentuk simetris molekul. Senyawa yang mampu membentuk ikatan hidrogen dalam air akan mudah larut dalam air. Panjang atau pendeknya rantao karbon (gugus alkil-R) memiliki pengaruh terhadap kealrutan senyawa dalam air.
ikatan hidrogen, Ikatan jenis ini terjadi karena gaya elektrostatik yang khusus antara dipol-dipol. Adanya ikatan hidrigen antarmolekul menyebabkan titik senyawa relatif lebih tinggi dibandingkan dengan senyawa lain yang memilki berat molekul sebanding. Titik didih senyaea golongna alkohol lebih tinggi daripada senyawa golongan alkana, demikian juga titik didih air lebih tinggidaripada aseton. Pengaruh ikatan hidrogen terhadap titik leleh tidak begitu besar karena pada wujud padat jarak antarmolekul cukup berdekatan dan yang paling berperan terhadap titik leleh adalah berat molekul zat dan bentuk simetris molekul. Senyawa yang mampu membentuk ikatan hidrogen dalam air akan mudah larut dalam air. Panjang atau pendeknya rantao karbon (gugus alkil-R) memiliki pengaruh terhadap kelarutan senyawa dalam air.
Subscribe to:
Posts (Atom)