There are many ways of classifying chemical reactions. In chemical reaction
engineering probably the most useful scheme is the breakdown according to
the number and types of phases involved, the big division being between the
homogeneous and heterogeneous systems. A reaction is homogeneous if it takes
place in one phase alone. A reaction is heterogeneous if it requires the presence
of at least two phases to proceed at the rate that it does. It is immaterial whether
the reaction takes place in one, two, or more phases; at an interface; or whether
the reactants and products are distributed among the phases or are all contained
within a single phase. All that counts is that at least two phases are necessary
for the reaction to proceed as it does.
Sometimes this classification is not clear-cut as with the large class of biological
reactions, the enzyme-substrate reactions. Here the enzyme acts as a catalyst in
the manufacture of proteins and other products. Since enzymes themselves are
highly complicated large-molecular-weight proteins of colloidal size, 10-100 nm,
enzyme-containing solutions represent a gray region between homogeneous and
heterogeneous systems. Other examples for which the distinction between homogeneous
and heterogeneous systems is not sharp are the very rapid chemical
reactions, such as the burning gas flame. Here large nonhomogeneity in composition
and temperature exist. Strictly speaking, then, we do not have a single phase,
for a phase implies uniform temperature, pressure, and composition throughout.
The answer to the question of how to classify these borderline cases is simple.
It depends on how we choose to treat them, and this in turn depends on which description we think is more useful. Thus, only in the context of a given situation
can we decide how best to treat these borderline cases.
Cutting across this classification is the catalytic reaction whose rate is altered
by materials that are neither reactants nor products. These foreign materials,
called catalysts, need not be present in large amounts. Catalysts act somehow as
go-betweens, either hindering or accelerating the reaction process while being
modified relatively slowly if at all.
Table 1.1 shows the classification of chemical reactions according to our scheme
with a few examples of typical reactions for each type.
No comments:
Post a Comment